Las propiedades analíticas de las funciones pasan a sus inversas.3 Así, como f(x) = bx es una función continua y diferenciable, también lo será logb(y). Toscamente hablando, una función continua es diferenciable si su gráfico no tiene «trazos puntiagudos». Más aún, como la derivada de f(x) evaluada en ln(b)bx por las propiedades de la función exponencial, la regla de la cadena implica que la derivada de logb(x) es dada por4 6
Esto es, la pendiente de la tangente que toca el gráfico del logaritmo en base-b en el punto (x, logb(x)) es igual a 1/(x ln(b)). En particular, la derivada de ln(x) es 1/x, lo que implica que la integral indefinida de 1/x es ln(x) + C.La derivada con un argumento funcional generalizado f(x) es
El cociente del miembro derecho es denominado derivada logarítmica de f. Calcular f'(x) por medio de la derivada de ln(f(x)) se conoce como diferenciación logarítmica.7 La integral indefinida del logaritmo natural ln(x) es:8
Fórmulas relacionadas, tales como integrales indefinidas de logaritmos en otras bases pueden ser obtenidas de esta ecuación usando el cambio de bases.9
[editar]Representación integral del logaritmo natural
El logaritmo natural de t concuerda con la integral de 1/x dx desde 1 a t:
En otras palabras, ln(t) es igual al área entre el eje x y el gráfico de la función 1/x, recorrido desde x = 1 a x = t (figura a la derecha). Esto es una consecuencia del teorema fundamental del cálculo y del hecho de que la derivada de ln(x) sea 1/x. El miembro de la derecha de esta ecuación puede servir con una definición para el logaritmo natural. Las fórmulas del producto y potencias de logaritmo pueden ser obtenidas de esta definición.10 Por ejemplo, la fórmula del producto ln(tu) = ln(t) + ln(u) se deduce como:
La igualdad (1) descompone la integral en dos partes, mientras que la igualdad (2) es un cambio de variable (w = x/t). En la ilustración de abajo, la descomposición corresponde a dividir el área en las partes azul y amarilla. Reescalando el área azul de la izquierda verticalmente mediante el factor t y contrayendo esta por el mismo factor horizontalmente no se cambia su tamaño. Moviéndola apropiadamente, el área de la gráfica se ajusta a la función f(x) = 1/x de nuevo. Por lo tanto, el área azul del término izquierdo, que es la integral de f(x) desde t a tu es la misma que la de la integral desde 1 a u. Esto justifica la igualdad (2) con otra demostración geométrica más.
La fórmula de la potencia ln(tr) = r ln(t) puede ser obtenida de manera similar:
La segunda igualdad usa los cambios de variable (integración por sustitución), w := x1/r.
La suma sobre los inversos de los números naturales,
es llamada serie armónica. Está estrechamente vinculada al logaritmo natural: cuando n tiende a infinito, la diferencia,
converge (i.e., se aproxima arbitrariamente cerca) a un número conocido como constante de Euler-Mascheroni. Esta relación ayuda a analizar el rendimiento de algoritmos,
No hay comentarios:
Publicar un comentario